Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.03.510566

ABSTRACT

The emergence of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) variants and "anatomical escape" characteristics threaten the effectiveness of current coronavirus disease (COVID-19) vaccines. There is an urgent need to understand the immunological mechanism of broad-spectrum respiratory tract protection to guide broader vaccines development. In this study, we investigated immune responses induced by an NS1-deleted influenza virus vectored intranasal COVID-19 vaccine (dNS1-RBD) which provides broad-spectrum protection against SARS-CoV-2 variants. Intranasal delivery of dNS1-RBD induced innate immunity, trained immunity and tissue-resident memory T cells covering the upper and lower respiratory tract. It restrained the inflammatory response by suppressing early phase viral load post SARS-CoV-2 challenge and attenuating pro-inflammatory cytokine (IL-6, IL-1B, and IFN-{gamma}) levels, thereby reducing excess immune-induced tissue injury compared with the control group. By inducing local cellular immunity and trained immunity, intranasal delivery of NS1-deleted influenza virus vectored vaccine represents a broad-spectrum COVID-19 vaccine strategy to reduce disease burden.


Subject(s)
COVID-19 , Coronavirus Infections
2.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1695136

ABSTRACT

Objective To examine the COVID-19 vaccination rate among a representative sample of adults from 31 provinces on the Chinese mainland and identify its influencing factors. Methods We gathered sociodemographic information, data on people's awareness and behavior regarding COVID-19 and the COVID-19 vaccine, the accessibility of COVID-19 vaccination services, community environmental factors influencing people's awareness and behavior regarding the vaccination, information about people's skepticism on COVID-19 vaccine, and information about people's trust in doctors as well as vaccine developers through an online nationwide cross-sectional survey among Chinese adults (18 years and older). The odds ratios (OR) and 95% confidence intervals (CI) for the statistical associations were estimated using logistic regression models. Results A total of 29,925 participants (51.4% females and 48.6% males) responded. 89.4% of the participants had already received a COVID-19 vaccination. After adjusting for demographic characteristics, awareness of COVID-19 pandemic/ COVID-19 vaccine, community environmental factors, awareness and behavior of general vaccinations, we discovered that having no religious affiliation, having the same occupational status as a result of coronavirus epidemic, being a non-smoker, always engaging in physical activity, having a lower social status, perceiving COVID-19 to be easily curable, and having easier access to vaccination are all associated with high vaccination rate (all P <0.05). Conclusions 31 provinces in mainland China currently have a relatively high rate of COVID-19 vaccination. To further increase the rate of COVID-19 vaccination, we must remove barriers associated with the community context and improve access to COVID-19 vaccine services. In addition, taking proactive and effective measures to address the reasons for non-vaccination with COVID-19 will aid in epidemic prevention and control.

3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1386044.v1

ABSTRACT

Antibody therapeutics for the treatment of COVID-19 has been highly successful while faces a challenge of the recent emergence of the Omicron variant which escapes the majority of existing SARS-CoV-2 neutralizing antibodies (nAbs). Here, we successfully generated a panel of SARS-CoV-2/SARS-CoV cross-neutralizing antibodies by sequential immunization of the two pseudoviruses. Of which, nAbs X01, X10 and X17 showed broadly neutralizing breadths against most variants of concern (VOCs) and X17 was further identified as a Class 5 nAb with undiminished neutralization against the Omicron variant. Cryo-EM structures of three-antibody in complex with the spike proteins of prototyped SARS-CoV-2, Delta, Omicron and SARS-CoV defined three non-overlapping conserved epitopes on the receptor-binding domain (RBD). The triple antibody cocktail exhibited enhanced resistance to viral escape and effective protection against the infection of Beta variant in hamsters. Our finding will aid the development of both antibody therapeutics and broad vaccines against SARS-CoV-2 and emerging variants.


Subject(s)
COVID-19
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.25.477789

ABSTRACT

The widespread SARS-CoV-2 in humans results in the continuous emergence of new variants. Recently emerged Omicron variant with multiple spike mutations sharply increases the risk of breakthrough infection or reinfection, highlighting the urgent need for new vaccines with broad-spectrum antigenic coverage. Using inter-lineage chimera and mutation patch strategies, we engineered a recombinant monomeric spike variant (STFK1628x), which showed high immunogenicity and mutually complementary antigenicity to its prototypic form (STFK). In hamsters, a bivalent vaccine comprised of STFK and STFK1628x elicited high titers of broad-spectrum antibodies to neutralize all 14 circulating SARS-CoV-2 variants, including Omicron; and fully protected vaccinees from intranasal SARS-CoV-2 challenges of either the ancestral strain or immune-evasive Beta variant. Strikingly, the vaccination of hamsters with the bivalent vaccine completely blocked the within-cage virus transmission to unvaccinated sentinels, for either the ancestral SARS-CoV-2 or Beta variant. Thus, our study provides new insights and antigen candidates for developing next-generation COVID-19 vaccines.


Subject(s)
COVID-19 , Breakthrough Pain
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.13.468472

ABSTRACT

Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, they are limited with respect to eliciting local immunity in the respiratory tract, which is the primary infection site for SARS-CoV-2. To overcome the limitations of intramuscular vaccines, we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, named CA4-dNS1-nCoV-RBD (dNS1-RBD). A preclinical study showed that in hamsters challenged 1 day and 7 days after single-dose vaccination or 6 months after booster vaccination, dNS1-RBD largely mitigated lung pathology, with no loss of body weight, caused by either the prototype-like strain or beta variant of SARS-CoV-2. Lasted data showed that the animals could be well protected against beta variant challenge 9 months after vaccination. Notably, the weight loss and lung pathological changes of hamsters could still be significantly reduced when the hamster was vaccinated 24 h after challenge. Moreover, such cellular immunity is relatively unimpaired for the most concerning SARS-CoV-2 variants. The protective immune mechanism of dNS1-RBD could be attributed to the innate immune response in the nasal epithelium, local RBD-specific T cell response in the lung, and RBD-specific IgA and IgG response. Thus, this study demonstrates that the intranasally delivered dNS1-RBD vaccine candidate may offer an important addition to fight against the ongoing COVID-19 pandemic, compensating limitations of current intramuscular vaccines, particularly at the start of an outbreak.


Subject(s)
Coronavirus Infections , Weight Loss , COVID-19
7.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3903926

ABSTRACT

Background: The pandemic of SARS-CoV-2 has turned into a global public health crisis. Acute SARS-CoV-2 infection is associated with severe pneumonia, multiple-organ failures and deaths. Currently, treatment for SARS-CoV-2 infection and severe pneumonia is largely lacking. Several clinical trials demonstrated that glucocorticoid dexamethasone is effective to reduce disease severity and mortality. However, whether dexamethasone is clinically sufficient to treat COVID-19 is unknown.Methods: We tested the therapeutic effect of dexamethasone on SARS-CoV-2 infection and pneumonia in a Syrian hamster model. Survival rate, body weight loss, viral RNA, antibody responses, severity of lung inflammation and injury were measured in a 7-day acute infection course.Findings: Dexamethasone reduces body weight loss and relieves the diffusion of lung injury in SARS-CoV-2-infected hamster by inhibiting the excessive proinflammatory cytokines including IL-4, IL-6, IL-10, IL-13, TNF-α and IFN-γ. Dexamethasone rescues hamsters from the lethal infection of SARS-CoV-2 variant D614G. Dexamethasone attenuates serum neutralizing antibody and RBD-specific antibody titers, and slightly increases viral RNA level in lung tissues.Interpretation: Overall, using the hamster model, this study improves our understanding of the therapeutic mechanisms and drawbacks of dexamethasone treatment of COVID-19, and suggests that an antiviral is needed to accompany the dexamethasone treatment regimen.Funding: National Science Key Research and Development Project of China, National Natural Science Foundation of China, the CAMS Innovation Fund for Medical Sciences and China Postdoctoral Science Foundation.Declaration of Interest: The authors declare no competing interests.Ethical Approval: All the animal experiments were approved by the Medical Ethics Committee(SUCM2021-112).


Subject(s)
COVID-19 , Lung Injury , Pneumonia , Wounds and Injuries
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423552

ABSTRACT

A safe and effective SARS-CoV-2 vaccine is essential to avert the on-going COVID-19 pandemic. Here, we developed a subunit vaccine, which is comprised of CHO-expressed spike ectodomain protein (StriFK) and nitrogen bisphosphonates-modified zinc-aluminum hybrid adjuvant (FH002C). This vaccine candidate rapidly elicited the robust humoral response, Th1/Th2 balanced helper CD4 T cell and CD8 T cell immune response in animal models. In mice, hamsters, and non-human primates, 2-shot and 3-shot immunization of StriFK-FH002C generated 28- to 38-fold and 47- to 269-fold higher neutralizing antibody titers than the human COVID-19 convalescent plasmas, respectively. More importantly, the StriFK-FH002C immunization conferred sterilizing immunity to prevent SARS-CoV-2 infection and transmission, which also protected animals from virus-induced weight loss, COVID-19-like symptoms, and pneumonia in hamsters. Vaccine-induced neutralizing and cell-based receptor-blocking antibody titers correlated well with protective efficacy in hamsters, suggesting vaccine-elicited protection is immune-associated. The StriFK-FH002C provided a promising SARS-CoV-2 vaccine candidate for further clinical evaluation.


Subject(s)
COVID-19 , Weight Loss , Pneumonia
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.19.423597

ABSTRACT

COVID-19, which has resulted a worldwide health crisis with more than 74.9 million confirmed cases worldwide by December 2020, is caused by a newly emerging coronavirus identified and named SARS-CoV-2 in February in Wuhan, China. Experiences in defeating SARS, which infested during 2002-2003, can be used in treating the new disease. However, comparative genomics and epidemiology studies have shown much difference between SARS-CoV and SARS-CoV-2, which underlies the different clinical features and therapies in between those two diseases. Further studies comparing transcriptomes infected by these two viruses to uncover the differences in host responses would be necessary. Here we conducted a comprehensive transcriptome analysis of SARS-CoV and SARS-CoV-2-infected human cell lines, including Caco-2, Calu-3, H1299. Clustering analysis and expression of ACE2 show that SARS-CoV-2 has broader but weaker infection, where the largest discrepancy occurs in the epithelial lung cancer cell, Calu-3. SARS-CoV-2 genes also show less tissue specificity than SARS-CoV genes. Furthermore, we detected more general but moderate immune responses in SARS-CoV-2 infected transcriptomes by comparing weighted gene co-expression networks and modules. Our results suggest a different immune therapy and treatment scheme for COVID-19 patients than the ones used on SARS patients. The wider but weaker permissiveness and host responses of virus infection may also imply a long-term existence of SARS-CoV-2 among human populations.


Subject(s)
Infections , Severe Acute Respiratory Syndrome , Tumor Virus Infections , Lung Neoplasms , COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.22.215236

ABSTRACT

The ongoing COVID-19 pandemic, caused by SARS-CoV-2 infection, has resulted in hundreds of thousands of deaths. Cellular entry of SARS-CoV-2, which is mediated by the viral spike protein and host ACE2 receptor, is an essential target for the development of vaccines, therapeutic antibodies, and drugs. Using a mammalian cell expression system, we generated a recombinant fluorescent protein (Gamillus)-fused SARS-CoV-2 spike trimer (STG) to probe the viral entry process. In ACE2-expressing cells, we found that the STG probe has excellent performance in the live-cell visualization of receptor binding, cellular uptake, and intracellular trafficking of SARS-CoV-2 under virus-free conditions. The new system allows quantitative analyses of the inhibition potentials and detailed influence of COVID-19-convalescent human plasmas, neutralizing antibodies and compounds, providing a versatile tool for high-throughput screening and phenotypic characterization of SARS-CoV-2 entry inhibitors. This approach may also be adapted to develop a viral entry visualization system for other viruses.


Subject(s)
COVID-19
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.13.20153106

ABSTRACT

Objectives The prevalence of antibodies to SARS-CoV-2 among blood donors in China remains unknown. To reveal the missing information, we investigated the seroprevalence of SARS-CoV-2 antibodies among blood donors in the cities of Wuhan, Shenzhen, and Shijiazhuang of China. Design Cross-sectional study Setting Three blood centers, located in the central, south and north China, respectively, recruiting from January to April 2020. Participants 38,144 healthy blood donors donated in Wuhan, Shenzhen and Shijiazhuang were enrolled, who were all met the criteria for blood donation during the COVID-19 pandemic in China. Main outcome measures Specific antibodies against SARS-CoV-2 including total antibody (TAb), IgG antibody against receptor-binding domain of spike protein (IgG-RBD) and nucleoprotein (IgG-N), and IgM. Pseudotype lentivirus-based neutralization test was performed on all TAb-positive samples. In addition, anonymous personal demographic information, including gender, age, ethnicity, occupation and educational level, and blood type were collected. Results A total of 519 samples from 410 donors were confirmed by neutralization tests. The SARS-CoV-2 seroprevalence among blood donors was 2.29% (407/17,794, 95%CI: 2.08% to 2.52%) in Wuhan, 0.029% (2/6,810, 95%CI: 0.0081% to 0.11%) in Shenzhen, and 0.0074% (1/13,540, 95%CI: 0.0013% to 0.042%) in Shijiazhuang, respectively. The earliest emergence of SARS-CoV-2 seropositivity in blood donors was identified on January 20, 2020 in Wuhan. The weekly prevalence of SARS-CoV-2 antibodies in Wuhan's blood donors changed dynamically and were 0.08% (95%CI: 0.02% to 0.28%) during January 15 to 22 (before city lockdown), 3.08% (95%CI: 2.67% to 3.55%) during January 23 to April 7 (city quarantine period) and 2.33% (95%CI: 2.06% to 2.63%) during April 8 to 30 (after lockdown easing). Female and older-age were identified to be independent risk factors for SARS-CoV-2 seropositivity among donors in Wuhan. Conclusions The prevalence of antibodies to SARS-CoV-2 among blood donors in China was low, even in Wuhan city. According to our data, the earliest emergence of SARS-CoV-2 in Wuhan's donors should not earlier than January, 2020. As most of the population of China remained uninfected during the early wave of COVID-19 pandemic, effective public health measures are still certainly required to block viral spread before a vaccine is widely available.


Subject(s)
COVID-19 , Occupational Diseases
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.05.135996

ABSTRACT

To identify drugs that are potentially used for the treatment of COVID-19, the potency of 1403 FDA-approved drugs were evaluated using a robust pseudovirus assay and the candidates were further confirmed by authentic SARS-CoV-2 assay. Four compounds, Clomiphene (citrate), Vortioxetine, Vortioxetine (hydrobromide) and Asenapine (hydrochloride), showed potent inhibitory effects in both pseudovirus and authentic virus assay. The combination of Clomiphene (citrate), Vortioxetine and Asenapine (hydrochloride) is much more potent than used alone, with IC50 of 0.34 M.


Subject(s)
COVID-19
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.08.026948

ABSTRACT

The global pandemic of Coronavirus disease 2019 (COVID-19) is a disaster for human society. A convenient and reliable in vitro neutralization assay is very important for the development of neutralizing antibodies, vaccines and other inhibitors. In this study, G protein-deficient vesicular stomatitis virus (VSVdG) bearing full-length and truncated spike (S) protein of SARS-CoV-2 were evaluated. The virus packaging efficiency of VSV-SARS-CoV-2-Sdel18 (S with C-terminal 18 amino acid truncation) is much higher than VSV-SARS-CoV-2-S. A neutralization assay for antibody screening and serum neutralizing titer quantification was established based on VSV-SARS-CoV-2-Sdel18 pseudovirus and human angiotensin-converting enzyme 2 (ACE2) overexpressed BHK21 cell (BHK21-hACE2). The experimental results can be obtained by automatically counting EGFP positive cell number at 12 hours after infection, making the assay convenient and high-throughput. The serum neutralizing titer of COVID-19 convalescent patients measured by VSV-SARS-CoV-2-Sdel18 pseudovirus assay has a good correlation with live SARS-CoV-2 assay. Seven neutralizing monoclonal antibodies targeting receptor binding domain (RBD) of SARS-CoV-2-S were obtained. This efficient and reliable pseudovirus assay model could facilitate the development of new drugs and vaccines.


Subject(s)
COVID-19 , Vesicular Stomatitis
14.
Biology--Microbiology Receptors Health hazards Endoplasmic reticulum Immune system Transcription E protein Apoptosis Proteins Calcium (reticular) Immune response Coronaviruses Cell death Microorganisms Viruses Cell membranes Infections Death receptors Calcium ions Coronaviridae ; 2020(Weishengwuxue Tongbao = Microbiology)
Article in English | 2020 2020-04-08 | ID: covidwho-833091

ABSTRACT

Coronaviruses are the common pathogenic microorganisms that infect human and animals and cause health hazards. Cell immune responses are induced to fight against coronavirus infection in infected cells. In order to initiate transcription and translation and to assemble the next generation in infected cells, viruses respond to cellular immune response and participate in many cellular activities. When specific receptors such as death receptors are bound by viral proteins, cells initiate apoptotic processes. Some viral proteins play critical roles in promoting or inhibiting apoptosis in the apoptotic process. For example, S protein induces external apoptotic pathway by binding to death receptor in cell membrane, M and S proteins induce internal apoptotic pathway by causing endoplasmic reticulum stress and Ca2+ imbalance. On the other hand, E protein inhibits apoptosis in infected cells. This article reviews the mechanism of pro-apoptotic or anti-apoptotic effects of coronavirus on infected cells. By understanding the different roles of different viral proteins in extrinsic and intrinsic apoptotic pathways, it is expected to provide ideas for artificial intervention in cell regulation for prevention and control of coronavirus infection.

SELECTION OF CITATIONS
SEARCH DETAIL